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ABSTRACT

In an earlier report [l] a consistent estimation scheme
was given for Gaussian Markov random field models. 1In this
report we consider some statistical properties of the resulting
estimate. Specifically, we derive an expression for the asym-
ptotic mean square error of the estimate for a general model
and compare the efficiency of this estimate with the popular
coding estimate for a simple first order isotropic model.
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1. Introduction

Markov random field (MRF) models are of much interest in
image analysis and processing. For instance, they have been
used in texture analysis [2,3] and image restoration [4-6].
They are also of interest in the analysis of field data [7].
MRF models characterize the special nature of the statistical
dependency of intensity levels over a neighborhood in an image.
If y(s) denotes the intensity level at location s, then y(s)
is written as a linear combination of intensity levels {y(s+r),
r€N} (where N is known as the neighbor set of dependence) and
additive noise. The members of set N are pairs of integers
(k,2) not including (0,0). For example, the first order MRF
model results when N= {(0,1),(1,0),(0,-1),(-1,0)} and the second
order MRF model results when N= {(-1,0),(1,0),(0,-1),(0,1),(-1,-1),
(-1,1),(1,-1),(1,1)}. Each MRF model is characterized by a set of
linear weights and the variance of the additive noise.

Suppose we are given an array of intensity level variations

{y(s),s€en}, Q={s:(1i,3j), 1=i,j=M} and we are interested in fitting
a Gaussian MRF model to this data. We also assume that the spec-
ific structure of the MRF model characterized by the neighbor set
N is known. The problem of estimating N has been considered else-
where [1,8]. Three estimation methods, namely the coding method
[7], the maximum likelihood (ML) method, and the method in [9]

can be used to obtain estimates of parameters characterizing a

MRF model. It is the intent of this paper to analyze in some

detail the statistical properties of the estimate in [1,8].




Specifically, we shall derive an expression for the asymptotic
mean square error of the estimate for an arbitrary MRF model.
We evaluate this expression for a simple first order isotropic

MRF model and compare the efficiency of the estimate with the

popular coding estimate.
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2. Estimates and their statistical properties in MRF models

2.1 Model Representation

Assume that the given image data {y(s)} obeys the MRF model
in (2.1), with the associated neighbor set N:
y(s)= L ery(s+r)+e(s),s€Q, (2.1)
r€N
In (2.1) the neighbor set N is symmetric, i.e., if r€N then
-r€éN. Further, the coefficients satisfy the constraint g,.=6_,.
The stationary noise sequence {e(s)} is partly characterized by
E(e(s)|y(r))=0 Vs#r
(2.2)
Using (2.1) and (2.2) one can prove that the noise sequence

{e(s)} is correlated with the correlation structure

E(e(s) e(r))=v, s=r
==0,_,V/(s-r) €N (2.3)
= 0 otherwise
It can be shown by methods similar to [10,11] that an observation
y(s) obeying (2.1) with the conditions (2.3) indeed satisfies
the Markov condition
P(y(s)|y(r),r€R,ri¥s)
= ply(s)| y(s+t) ,teN)
We shall characterize the neighbor set for the MRF model using
the set NS’ which includes members from the non-symmetric half
of N, i.e., if séNg then -8€Ng and N = {s:seNS}u{-s:seNS}. A

sufficient condition to ensure stationarity is [7]

k
zzek'zzl

L
2, < 1 whenever |z,| = |z,]| =1




2.2 A consistent estimation scheme [1,8]:

Consider the estimates

o* = [L q(s) q ()17 L(Z qls) y(s)) (2.4)
0 R i
and
vt =1 1 (y(s)-0*Tq(s))> (2.5)
M2 Q ~F
where
S)I =Q - QB
and
SZB = {s = (i,j): s€Q and (s+r)£Q

for at least one re¢N}
We now state a theorem regarding the consistency of the estimate
?* and give an expression for the asymptotic variance of the
estimate Q*. An expression for the asymptotic variance of 6* for

an isotropic MRF model with N, = {(0,1),(1,0)} is also given.

S

Theorem 1l: Let y(s), s€R be the set of observations obeying
the MRF model (2.1). Then
(i) The estimate 8* is asymptotically consistent.

(ii) The asymptotic covariance matrix of 6* is

E(8-8%) (8-0)"= = [v @71 + 2v* (")
M (2.6)
v =1 I &I T, -1
- ;E Q s T Ns-r):r,s(g ) 7l
(s=-r)eN
where
g==E[gungT(sH
and
_ T
T, s = Elg(rig (s)]

i




(iii) For the isotropic conditional model with Ns =

{¢(0,1),(1,0)}, the asymptotic expected mean square error is

2 2
2 26 (1-46«1'0)
E(0-0%)° = 33 (2.7)
4M “1,0
a3 o = coviy(s),y(s+(1,0))) (2.8)
c0V(y2}S))

The elements of matrices Q and ?r,s are functions of normalized
autocorrelation coefficients O, g The proof is given in Appen-
dix I.

Although g* is a consistent estimate of 6, it is not very
efficient. We compare the efficiency of this estimate with
efficiencies of the coding estimate for a simple MRF model with
Ng = {(0,1),(1,0)}. The exact ML estimate is obtained by assuming
a toroidal lattice representation for y(s) and maximizing the
resulting log likelihood function by using the Newton-Raphson
procedure. Equation (2.4) can also be used for toroidal lattice
representation by summing over Q instead of QI. The resulting
difference in the numerical value is negligible for sufficiently

large M.
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2.3 Comparison of estimates

We compare the asymptotic variance of the estimate (2.4)
with the asymptotic variances of the coding estimate and ML

estimate for the isotropic conditional models with NS = {(0,1),(1,0)}.

From (9], the asymptotic variance of the coding estimate Gcis h
6(1l-46a )
2 1,0
M“Var(e.) = L (2.9)
C 2(11’0 }
Also from [9], the variance of the ML estimate aML is
var(6,.) = — 0.2, (2.10)
M®(I(8) -4V .(0))
10
where
1 2m (cos x+cos vy) dxd
I1(8) = — IJ’ Y Y
41 0 (1-268(cos x +cos y))
and

(8) = 1 ?? cos (sx+ty)dxdy
a2 6 (1-26(cos x + cos y))

Tabulated values of Vlo(e), % 0 and I(6) are available in [9]

4
for different values of 6. Using these values, and (2.7), (2.9) and
(2.10), ¢tolumns 2~4 of Table I are computed. The asymptotic

efficiencies in columns 5 and 6 are defined by
var (9 ML)

eff(ec)
Varleci

and N
Var (6 mr,)

eff(o*) = Far (%)
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It is evident that the estimate g* computed using (2.4) is
more efficient than the coding estimate but is not as good

as the ML estimate. Note that column 5 is available in [9].
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Appendix |
proof of Theorem 13
—— | —— A ——————— —
i) We have from (2.4

0% = [T at)q (937 (L ats)yts) M
- ar 2y

Substituting for y(s) from (2.1) and simplifying, we have

LY als)q (s)TCe*~0) = Tals)e(s) (2)
[T - Qr”
1 I
Since E(q(s)e(s)) = 0 by (2.2) and [ Z:q(s)qT(s)J is a positive definite
matrix, the consistency of the estimate e* follows.
C-]
ii) To make our calculations easy we assume from now on thate(s)is normélly

distributed. Multiplying (2) by its transpose and taking expectations,

we have
ELY qls)q" (s)€8*-8) (0*-0 T¢I qts)q (s2) "3
S S
= LY ats)els) ¥ (gtrelr) T3 3)
S r

=3 Ecqs)els)) E(g (rretr))
s r

+2;%;E(g(s)e(r)) ECq (r)e(s))




ot

*)‘s:)_rjuetsnm) ECq(r)g' (s))

=1 + 11 + 111, where

1 =0 , by using 2.2);

- 2.2 . : .
I1 =2 My Imxm , by using (2.2),
11 = v 3 Ecals)g (s)

S

v T 0oy Elalgl(s)
rs
(s-r)eN
pefining
E(g(s)gT(s)) =Qq, mxm matrix
E(q(f)qT(s)) =T _ _, mxm matrix
-~ -~ ~r’s

= M2 -
11 =M% Q@ - v | Zszr; e(s_r) Ir,s

(s~r)eN

substituting ¢6), (7), and (9) , we see that

RHS of (3)

2 2
= MCv Q@ + 2v°1 -V ] T ]
- mxm Zslir: (s=r) ~f,S

(s-r)eN

(4)

(s>

(6)

€0

(8

(9

1o




for large values of M

Ly atqtsr = a + nam, an
ue's

where n(M) is such that

e’y = o5
5 M

u;ing (11) we obtain

(LHS of (3))/mY =

ECCQ + n(m) (8*-0)(0™-0)T(a + ncm) T “12)

= e ee*-0)ce™-0)" a7 + 0c1/mdD), (13)

Substitution of (10) and (13) into (3) yields

E(g*-e)(e*-e)T = 15 tv @™l + 2v%dH ™!
- - - " M ~ ~
-3 -1 4
Mzg ‘L::}; Os-ry Tr,s® " +00M7) (14
(s=r)eN

) Q.E.D.
c) For the isotropic conditional model with NS = (0,1, (1,00}, (14)
reduces to .
O S L L — C4v2
. 2

. : M2 (e(q%(s))?




+ vE(Q2(s)) -~ v TF Eca(sralr))] (15
sr .

(s=-r)ei

where

q(s) = y(s+(0,1)) + y(s+(0,-1))

+ y(s+(1,0)) + y(s+(-1,0)) 4 (16)
Let
YL = ECy(s)y(s+(k,L))] an
Note
T, U Yop a2 Yk T YL (18)

Express the higher order correlations Y2 12 Y1.227 Y2 9 and Y3 9 in
’ [ 4 4 l Aad

terms of Yo,0¢ 0,1” 71'0 and 71'1 by

10’0 = vl(1-kea1’0) 19
-1 ~ @
2,1 " 28 1,17 1,0

= 1 - - -
13,0 Yl,o“ *e'z‘} Yo,0 = 3,1 " 3y,
) 26 20

@1




1
2,058 "1,0" "1,-1 " Y0,0 " 1,1 (22)

1
"1,-2 5% ",-1 " "1,0 (23
Equations (19-23) can be obtained by multiplying y(s) by appropriately
shifted y(s+(k,1)) and taking expectations.

Consider the various terms in (15).

2 1,
E(q-(s)) = 3-471'0 24>
E Yq(r)) = 4C9 + +
(s-r)eN
="0(‘°T + 1 Y -1 . | (25)
1,0 ,2 7,0 e 70,0

substitution of (24) and (25) in (15) yields

2
ECo*-0)% = 1_ € [4v? 4 4uy. . - 160Y, V]
2 2 0,0 1,0
M 1671 0
. 4

which on using (19) and 01'0 = 71’0/71’1 gives

204, rA

ECe*-0)¢ =

2.2
4M 01’0
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